Understanding Augmented Analytics Latest Trends and Use Cases

Introduction to Augmented Analytics

With the rising demands and importance of data, data processing tools and advanced level technologies are more readily available to industries or companies regardless of the organization's size. Nowadays, for many brands or industries, data-driven is a key priority. To remain in competition in the market, industries need to adopt advanced data processing technologies like Augmented Analytics. 

According to a recent survey, around 90% of the organization owners said that this kind of data would transform business operations in the same way the internet did. They make a prognosis if industries that are not implementing a business intelligence strategy to collect, process, and find insights from data will be left behind in the competition. Due to the growing adoption of advanced generation technologies such as augmented analytics, allied analytics has predicted that global augmented analytics demand will reach $30 by the end of 2024.


Business Increasingly relies on AI (Artificial Intelligence) to make important decisions and embraces AI in the business workflow.


What is Augmented Analytics?

Augmented analytics facilitates data assessment by using Artificial Intelligence (AI) and machine learning to improve human efforts. As it automates data insights and offers better information, the process is more powerful than conventional analysis methods.

In the banking, financial services, and insurance sectors, Enhanced Analytics is currently being introduced. The worldwide augmented analytics market promotes business understanding of the value of consuming emerging data streams from multiple sources. The a growing need to improve productivity, democratize analytics, and data and business managers need to make the job stress-free.


The Workflow of Augmented Analytics 

Workflow of Augmented Analytics

Prepare Data

  • The algorithm detects schemas, profiles, catalog and recommends enrichment, data lineage, and metadata.

Finds Pattern in Data

  • Natural-Language queries:- Using NLP, users can query their doubts
  • The algorithm helps in finding all relevant patterns in data
  • Models are auto-generated according to datasets and user requirements.

Share and Operational Finding

  • Insights are narrated in natural language or visualization to focus the user on what is important and actionable.
  • Can it be embedded in apps or conversational UI?

What are the technologies used for Augmented Analytics?

Technologies used for Augmented analytics

Big Data

Big data indicates a large amount of structured and unstructured data. Some big data is summarised as 3Vs: Volume, Velocity, and Variety. McKinsey defines datasets whose size is beyond the potential of traditional database software tools to collect, store, manage, and analyze. In augmented analytics, data is stored from various data sources, and big data helps keep and manage data.

Machine Learning

To get the most out of Big Data, machine learning techniques are mostly preferred by the organization. In Augmented analytics, machine learning is a way of analyzing data that allows computer systems to learn from input data without human interference. With the help of specially programmed algorithms in Big Data tools, augmented analytics through machine learning systems can continuously adjust to the new data and improve themselves, helping the organization refine its operations and achieve a competitive advantage.

Artificial Intelligence

In augmented analytics, artificial Intelligence is another significant technology that goes on par with ML. Artificial Intelligence, abbreviated as AI, is a computer science branch that produces a machine capable of performing tasks similar to humans, such as comprehension of speech and text, understanding, and problem-solving. Augmented Analytics can perform complex tasks using AI-driven approaches by analyzing enormous data and recognizing these recurrent patterns.

Natural Language Processing

Natural Language Processing (NLP) technology enables Augmented Analytics systems to view and manipulate natural languages as people do. Embedded NLP systems can analyze terms, phrases, sentences, paragraphs, and entire texts using statistical methods and machine learning algorithms, translating knowledge into readable human language and vice versa.

What are the Benefits of Augmented Analytics?

The democratization of data. 

  • Augmented analytics helps everyone if some person is new in this field. Augmented analytics has pre-built models and algorithms so that to do this job, data scientists or IT do not have that much burden on them, and they can work towards creative things more.
  • With user-friendly interfaces, these models are out-of-the-box(easy to understand) so that business users and executives can access the tools quickly.

Faster decision-making

  • Augmented analytics would recommend which datasets should be used in the tests, warn users when upgrading datasets, and suggest new datasets if users do not get the expected results. 
  • With just one click, all users receive reliable forecasts and projections based on historical data.

Automated recommendations

  • Augmented analytics solutions feature NLP, allowing non-technical users to ask source data-related questions quickly. 
  • With intelligent suggestions, natural language generation (NLG) then automates converting complex data into text, thus accelerating analytical insights. 
  • Anyone can quickly discover unseen patterns and forecast trends using automated suggestions for data enrichment and visualization to maximize the time it takes to go from data to insights to decisions. 
  • NLP technology also helps drive the ability to make sense of vast quantities of data for non-expert users.

Become a truly data-driven company

  • Although companies are rapidly adapting to change, the value of data and business understanding is more important than ever. 
  • Analytics has become essential in this age of big data to do everything from understanding sales patterns to segmenting customers based on their online habits, "Using data".

Some people use NLP, NLGand NLU interchangeably, but there is  difference between all of them.

The Use Case for augmented Analytics

Marketers

For in-depth research, planning, and reporting, marketing executives, entrepreneurs, and others who fall under the marketing umbrella mainly depend upon analytics professionals. Akira AI provides various features to marketers like missing value imputation, target leakage detection, time-series feature generation. Marketing-based professionals can perform their daily work more efficiently through augmented analytics and makes it layman-friendly. Augmented analytics also put the main control under marketing professionals.

Manufacturing 

Through Augmented analytics, industries like manufacturing can make more accurate predictions and help enhance performance. Augmented analytics also help analyze various equipment data in real-time and predict when services of an asset are required. Akira AI has automatically generated data insights such as exceptions, segments, links, and predictions. It provides an embedded AI-powered system in augmented analytics that helps process and analyze a large amount of company external and internal data, revealing trends, discovering patterns, and forecasting future outcomes. By using augmented analytics, manufacturers can move from repair-or-replace current maintenance models to predict and fix models.

E-Commerce

A few years ago, without human supervision, it was impossible to generate business insights automatically and automatically conduct data analysis. But now, with the help of augmented analytics, it is possible. Akira AI provides features like automatically chooses algorithms, selects features, deploys models, and monitors deployed models to identify when models need to be refreshed proactively. Through informative presentation makes it smart. Using tables, charts, numbers of descriptions, and other visuals Augmented analytics visualizes data related to sales, inventory customers that help e-commerce companies make more data-driven decisions. It creates fully personalized and exclusive shopping experiences. Through NLP, users can query in natural language and receive answers in the same form that makes it more effective and engaging for customers and employees.

Healthcare 

To a certain degree, the quality of medical care and patient outcomes rely on medical practitioners' suitability. Augmented analytics fills a crucial gap in providing more people with higher-quality training at a lower cost. Routine analytical activities in a hospital include hospital staffing, operational expenses, patient turnover, waiting times, and overall experience. Augmented analytics systems offer instant responses to searched questions, along with responses to additional questions workers didn't realize they were asking. Our AI-powered engine offers straightforward insights to discover hidden inefficiencies and key areas to be tackled.


Artificial Intelligence offers various opportunities for the Health industry and makes better and quicker decisions in health care


Insurance

By matching all new insurance claims against the profiles of previous fraudulent claims, insurers can now enhance insurance fraud identification through Augmented Analytics and Akira AI predictive modeling. It will help inspectors of insurance claims become data-driven decision-makers and progress through hundreds of claims from the conventional method of sifting, seeking to identify fraud using 'gut 'feeling.' It is also possible to use Augmented Analytics automates alleged fraud cases' flagging for further investigation. Finally, this strategy would sanitize the insurance industry from false claims and provide those who need it the most with insurance services.

Data Scientists

Augmented analytics platforms like Akira AI gives data scientists and analysts the greatest advantage as they need not run routine analysis and prepare basic reports. It also helps data scientists to solve complex problems and data science projects through advanced AI and machine learning techniques used in augmented analytics. Data analytics and scientists can move forward in the right direction with augmented analytics.

Traditional BI and Augmented Analytics

Flow in Traditional BI and Augmented Analytics

Traditional BI

In traditional BI, users manually connect data sources and clean data(where might be chances of error occur), which is a very painstaking task. Then they pick data sources that they need to analyze. After selecting data sources, they use the platform to perform analysis, receive insights, reports and share them across the organization through emails, messages, or within the platform if it's sufficiently advanced.

Augmented Analytics

AI systems help ensure that data collection and access to the system are effortless. Once the information is there, the intelligent system allows human users to select the correct datasets based on the associations detected when the data is brought in. "The AI allows the human "run" when it is time for real analysis, but will also suggest analyses that the human may not even know they want as they set up the "drive."The human user can easily share these insights through a broad range of integrated functions once the insights have been gleaned: in-app messaging, mobile apps, chatbots, AI assistants, and more.

The Future Trends of Augmented Analytics

  • As shown in the figure, the demand for augmented analytics in different industries will grow at a great pace. Like in 2024, the market size of industrial use cases will be 2500 USD million.

Future Trends of Augmented Analytics

  • As shown in the figure, the demand for augmented analytics in different regions like in 2024, demand for augmented analytics will be maximum in Asia-Pacific.

Latest Trends of Augmented Analytics

Read more about IoT Edge Analytics and Latest Trends

Click to know more about the Ethics of Artificial Intelligence